7th IWA REGIONAL CONFERENCE Yokohama, February, 2012

Critical Watermains Strategy

Paul Freeman General Manager Asset Management

Presentation Outline

- About Sydney Water
- Tariff Model
- Critical Water Main Strategy
- Future Investment

Tariff model (Building Block)

The Regulatory Asset Base

Return on assets (\$975 million)

Regulatory Depreciation

Operating and maintenance

Regulated Asset Base (\$13 billion)

Regulated cost of capital (WACC) 7.5%

Tariff impacts of capital expenditure

- Assets only impact the tariff via the RAB
- Prudent capital expenditure is added to the RAB
- Depreciation is deducted from the RAB
- Ensure capital is recovered over its economic life
- Every \$100M of new water investment = \$4.85 on water tariff per year

Test of Capital Prudence

- Determined by IPART via efficiency audit
- IPART engage Ofwat auditors from UK
- Based on:
 - asset plan for each asset class
 - condition and service risk assessments
 - renewal decision framework
 - economic business case for renewal expenditure

Understand Likelihood of Failure

Canterbury Rd 750mm Steel Main

Pittwater Rd, April 2007

Caringbah Break Feb 2007

Condition Assessment Techniques

Intelligent Pigging

Eddy Current

Linear Polarisation Resistance

11

Economic Model

Water Main Repair Cost

Water Disruption Costs

Cost to Customer

		Value	Source of Data	
Purchase bottled	12 litre	\$6		
water			Market survey	
Travel to shops	30 minutes @ \$18/hour	\$9	RTA Economic Analysis Manual	
Time of Customer	20 minutes @ \$30/hr	\$10	GSP data from ABS	
Total Cost	\$25			

Note: It is assumed that 12 litres can last each customer 4 hrs; If the water disruption is longer than 4 hrs, the customers will repeat the same action;

Customer Impact

Business Customer Acceptance for Unplanned interruption

Duration (hours)	1	2	3	4	5	6	7	8	9	10	15	20	30	40	48
Could not cope with (%)	1	2	8	19	29	34	43	50	57	64	66	68	72	75	82
Incremental (%)	1	1	6	11	10	5	9	7	7	7	2	2	4	3	7
Purchasing Cost (\$)	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
Cost incurred per hour (\$)	25	25	150	275	275	150	375	450	450	325	425	500	475	400	600
Accumulated cost (\$)	25	50	200	475	750	900	1275	1725	2175	2500	2925	3425	3900	4300	4900
Social Cost (\$/Cust/hr)	0.3	0.5	2	5	8	9	13	17	22	25	29	34	39	43	49

Traffic Disruption Costs

Based on RTA Economic Analysis Manual

Event Time

Estimating Time Lost by Passengers

Traffic Disruption Costs

(RTA Economic Analysis Manual)

			Base Cost						
Туре	% on road	People/Veh.	(\$/hour/p)	Total Cost/veh/hr					
Private	78.25%	1.64	\$10.15	\$17					
Bueinessic Dier	un945%	oct 1.3616 0	00 _ & 2495 000	bor bou 32					
Light Commercial	up <u>101</u> C	031 - 1.30 - 0.00							
Heavy Commercial	3.75%	1.00	\$22.66	\$23					
Average				\$19					
Estimated Road Traffic V	olumes and Soc	ial Costs							
			Vehicles Per Hour						
Category		Vehicles Per Day	(Peaked: Day/12)	Cost per Hour					
Minor Roads (2 Lane		10000	07000 000 833	\$15,682					
Major Roads (4 Earle	gisrupti			our _{\$39,204}					
Highways / Freeway	s (6 Lanes)	70000	5833	\$109,771					
Railway Line Disruption Costs (Assumed that there is 4 Lines)									
Average Trains Per I	Hour	People/Veh.	Cost (\$/hour/p)	Total Cost/hr					
	16	600	\$10.15	\$97,440					

Risk Profile by Length of Critical Main

		Cost \$M	4	3	2	1	Total			
e	5	above 5.00	0	0	14	3	17			
lenc	4	2.00 - 5.00	0	16	34	131	181			
nbə	3	0.75 - 2.00	21	25	105	678	830			
suo	2	0.35 - 0.75	7	27	116	820	970			
0	1	0 - 0.35	71	200	528	1,958	2,757			
	Probability of failure									

Future Investment in Critical Mains

to 2016

- \$173 million in renewal
- \$1.5 million per annum condition assessment
- ▶\$6 million in contingency and resilience planning
- ▶\$16 million (Cash and in-kind) Industry/University research project

to 2042

\$2 billion in renewals

System Resilience

- Simulate network failure
- Assess customer impacts
- Plan alternate supply options relative to cost of failure

Condition Assessment Technique

- Linear Polarisation Resistivity (LPR) coupled with Mainscan (electro magnetic) and ultrasonic
- Resistance across soil sample (Corrosion Potential)
- Results & asset details entered into Analysis Algorithms
- Reported in terms of Probability of failure for various timeframes

Limitations of LPR Technique

- Inference method vs continuous
 Proximity of soil sample to pipe
- Sydney Water asset data accuracy
- Accuracy of prediction algorithm

Condition Assessment

- 4 year condition assessment program developed from 2008 to 2012 with \$1 million per annum of 50km
- 300km of critical water mains have been assessed through LPR coupled with Mainscan and eltromagnetic tools
- The condition assessment program is going to be increased to \$1.5 million per annum from 2012 t o2016
- Quantified risk model is used to prioritise the condition assessment program

Research & Development

Likelihood of Failure

Failure Modes

Canterbury Rd 750mm Steel Main

Pittwater Rd, April 2007

Caringbah Break Feb 2007

Better Definition of Failure ?

- 1. Stress at any location of the pipe reaches its ultimate strength for brittle material such as Cast Iron
- 2. 100% perforation of wall thickness for ductile material such as Steel and Ductile Iron
- 3. Pipe collapse

Condition Assessment Techniques

Intelligent Pigging

Diagram of LPR Soil Testing

Linear Polarisation Resistance

BROADBAND ELECTROMAGNETIC METHOD / TECHNOLOGY SURFACE SCANNING METHOD

A Process to Analyze Condition Assessment Results

Guidelines for use of statistics for analysis of sample inspection of corrosion

TWI Limited Granta Park Great Abington Cambridge CB1 6AL United Kingdom

