Strategy for Water Leakage Control in Japan ~ In view of the water resources~

Hiroki Ariyoshi (Dr. Eng.)

08 Apr.-2014 IWA Workshop on Water & Energy and Water Loss 2014

Contents

 Necessity of water leakage prevention
The difference between "EFFECTIVE WATER"& "WATER LOSS"& "NRW"
"Analysis of Supplied Water" vs. "Water Balance Table"
Indicators of water leakage management
Water Leakage Control in Japan
Six Stages for Leakage Reduction Measures
Systematization of Water Leakage Prevention
Leakage Control by the continuous DATA monitoring

Necessity of leakage control

- Leakage causes a lot of losses, because leakage uselessly consumes the purified water produced with labour, time and cost.
- Leakage control <u>corresponds to the development of new water</u> <u>resources</u>. Annual water leakage amount in Japan equals about 10 times of dam volume.
- Leakage prevention can <u>contribute to the global warming</u> <u>countermeasure.</u>
- Leakage does not only brings direct losses to the waterworks, but also causes secondary accidents such as road cave-in, traffic accidents and property damage by flooding.
- There is danger of water quality accidents caused by the invasion of contaminated water from the leaking points into pipes.

3

	Effective water	Accounted - for water	Charged water	Water tariff
			wholesale	To other utilities
			Others	Fire fighting, etc.
Supplied water (Distributi on input)		Unaccounted -for water	Customer meter inaccuracies	Beyond the measurable limit
			Operational use	Pipe flushing to maintain pipes
			Others	Effectively used
				but not charged
	Ineffective water		Leakage	Treatment plants to customer meters
			Reduction water by mediation	Due to colored water / leakage, mediated at billing (Uncharged)

Analysis of Supplied Water by JWWA

Indicators for water leakage management in JAPAN

• Waterworks Vision 2004

by Ministry of Health, Labour and Welfare

- Target of "Effective Water Ratio"
- •More Than 98% : Large-scale Waterworks
- •More Than 95% : small & medium-scale

Waterworks Guidelines 2005 by JWWA

Leakage Ratio & Accounted-for water Ratio As a domestic standard an index

Water Balance Table by IWA

Effective & Unaccounted-for water
Ineffective water

5

		Billed	Billed Metered Consumption	Revenue Water	
	Authorised Consumption	Authorised Consumption	Billed Unmetered Consumption		
		Unbilled Authorised Consumption	Unbilled Metered Consumption		
			Unbilled Unmetered Consumption	Non- Revenue Water	
System input Volume	Water Losses	Commercial (Apparent) Losses	Unauthorised Consumption		
			Customer Meter Inaccuracies and Data Handling Errors		
			Leakage on Transmission and Distribution Mains		
		Physical (Real) Losses			Leakage and Overflows from Storage Tanks
		(Leakage on Service Connections up to the Customer Meter		

Infrastructure Leakage Index : IWA

ILI = CAPL/MAAPL

CAPL(litres/day): <u>Current Annual Volume of Physical Losses</u> MAPL(litres/day): <u>Minimum Achievable Annual Physical Losses</u>

MAAPL (litres/day) =(18 x Lm + 0.8 x Nc + 25 x Lp)x P

Lm = mains length (km)

Nc = number of service connections

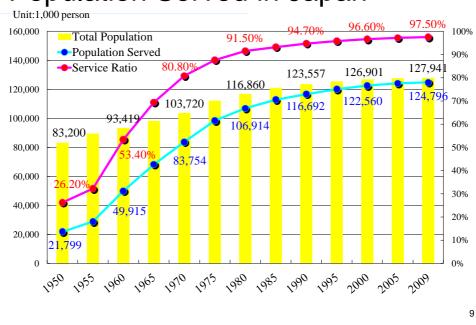
Lp = total length of private pipe, property boundary to customer meter (km)

P = average pressure (m)

Technical ILI Performance Category		Physical Losses [litres/connection/day] (when the system is pressured) at an average pressure of:					
			10 m	20 m	30 m	40 m	50 m
s sd	А	1 - 2		< 50	< 75	< 100	< 125
ope	В	2 - 4		50 - 100	75 - 150	100 - 200	125 - 250
Developed Countries	С	4 - 8		100 - 200	150 - 300	200 - 400	250 - 500
<u> </u>	D	> 8		> 200	> 300	> 400	> 500
s S	А	1 - 4	< 50	< 100	< 150	< 200	< 250
opir itrie	В	4 - 8	50 - 100	100 - 200	150 - 300	200 - 400	250 - 500
Developing Countries	С	8 - 16	100 - 200	200 - 400	300 - 600	400 - 800	500 - 1000
80	D	> 16	> 200	> 400	> 600	> 800	> 1000

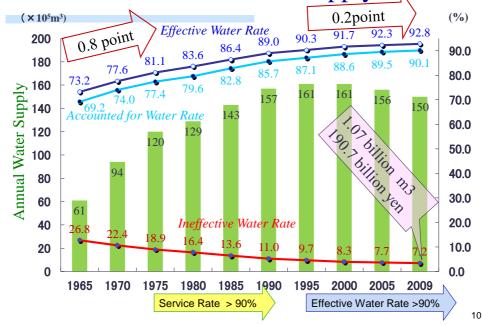
Table 8.2: Physical loss target matrix

• Category A—Good. Further loss reduction may be uneconomic and careful analysis needed to identify cost-effective improvements.


• Category B—Potential for marked improvements. Consider pressure management, better active leakage control, and better maintenance.

• Category C—Poor. Tolerable only if water is plentiful and cheap, and even then intensify NRW reduction efforts.

• Category D—Bad. The utility is using resources inefficiently and NRW reduction programmes are imperative.


7

Population Served in Japan

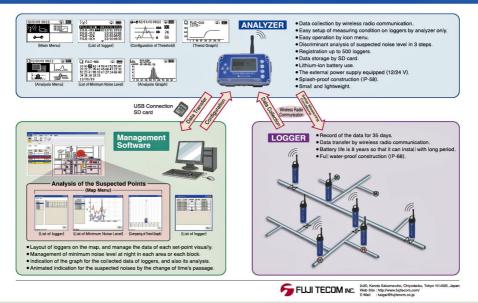
Effective Water Rate and Supply Amount

Trends in Leakage Ratio (Bureau of Waterworks, Tokyo Metropolitan Government) % -Leakage Ratio 90 80 70 End of World War II F.Y. 2012 60 50 80.0% U/n 40 30 20 10

0

Six Stages of Leakage Control Measures

Stage	Approx. Leakage Rate	Purpose of Leak Reduction Work	
1st	More than 35%	To decrease surface leakage and apparent losses	Human wave tactics, door to door check, distribution pressure control, public education
2nd	35 – 25%	To decrease underground leakage and water theft	Zoning, exact piping maps, training & good equipment
Зrd	30-25 % (overlapping 2 nd)	To stop recurrence of leakage	Big increase in leakage control work & starting replacement of aged pipes
4th	25 – 15 %	To carry out thorough leakage control work	Revision of working method & acceleration of pipe replacement
5th	15 - 5 %	To wrap up the proactive leakage control work	Completion of pipe replacement & Collection and analysis of leakage data
6th	Less than 5%	To keep the minimum rate	Leakage management using continuous monitoring data


Reference : Shozo Yamazaki , Non-Revenue Water Management , 2011

11

eyotomatization of Wator Eoakago i Tovontion					
Items	Specific Schemes				
Preparation	Establishment of the construction system				
Basic research	Grasp of the flow amount & pressure				
Technical development	Improvement of materials & leak detection method				
Quick response work	Quick repair of surface leakage				
Planned circulation Work	Detection of potential leakage				
Pipeline improvement	Aged pipeline renewal				
Pressure adjustment	Network maintenance, pressure measurement				
Monitoring of pipeline condition	Evaluation by the collection and analysis of pipeline data				
"Water	maintenance guidelines" by JWWA, 2006				
	Preparation Basic research Technical development Quick response work Planned circulation Work Pipeline improvement Pressure adjustment Monitoring of pipeline condition				

Systematization of Water Leakage Prevention

Leakage Control by the Continuous DATA Monitoring FUJI LEAK NOISE LOGGER SYSTEM LNL-1

FUJI TECOM supports your NRW reduction project, through the agency of 37 countries in the world.

Thank you for your attention ! 5 FUJI TECOM INC.